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A Lagrangian vorticity-based method is presented for simulating two-way phase
interaction in a two-phase flow with heavy particles. The flow is computed by solving
the vorticity transport equation, including the particle-induced vorticity source, and
the mass conservation equation for particle concentration on separate sets of fluid
control points and particle control points, respectively. The fluid control points are
advected with the local fluid velocity, plus a diffusion velocity for viscous problems to
account for the spread of the vorticity support via diffusion, while the particle control
points are advected by solution of the Lagrangian particle momentum equation. The
particle concentration and vorticity transport equations are evaluated using volume-
averaged particle velocity and contact force fields, obtained by a weighted average
over nearby particle control points. One novel feature of the numerical method is
the scheme for calculation of the particle-induced vorticity source using a “moving
least-square” differentiation scheme across the two sets of control points. Another
feature of the method is its ability to absorb the vorticity generated by particle
forces through an adaptive scheme for generation of new fluid control points. Test
calculations with a vortex patch filled with particles show that the numerical results
compare well with the results obtained both by a traditional finite-difference method
and by an asymptotic approximation valid for small Stokes numbers. Other features
of the numerical method are demonstrated for calculations involving a particle cloud
falling under gravity and a two-phase mixing layer flowg 1999 Academic Press
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1. INTRODUCTION

Two-phase flows involving solid particles or droplets in gases or bubbles or sedir
in liquids have been subject to intensive study for decades due to their wide rang
applications in industrial and environmental processes. Much of the previous work
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focused on investigation of particle dynamics and dispersion [1-9]. These studies typic
employ theone-way couplingpproximation, in which the influence of the particles on
the motion of the carrier fluid is assumed to be negligible. While the one-way couplil
approximation is simple to implement, it is generally valid only for flows with small particl
mass concentrations [10].

Even for flows with small average particle mass fraction, local values of the particle m:
concentration may increase significantly above the average value due to the particle in
bias. For instance, in a direct numerical simulation of isotropic turbulence, Squires &
Eaton [4] found that preferential collection of particles in regions of low vorticity and hig
strain rate causes the instantaneous value of the particle concentration to increase in c
regions of the flow by as much as 25 times the mean value. Studies of particle disper
in free shear flows [1-3, 5-7, 9] similarly show that the particles are expelled from t
vortex centers and accumulate in thin bands at the edges of the vortex structures. The &
observations suggest that even for low average particle mass concentration, the one
coupling assumption may be invalid in certain regions of the flow.

There are two competing methods commonly used to model two-phase flows with sig
icant two-way interaction between the fluid and particle phases. lwthdluid approach
the basic variables are continuous fields that can be associated with averages over the
vidual particles, and include the average particle and fluid velocity fields and the parti
mass concentration. Evolution equations for particle mass concentration and fluid and p
cle momentum are similarly obtained by averaging the mass and momentum balances
a set of small control volumes spanning the flow [11, 12]. The averaged particle mom
tum equation contains an additional Reynolds-stress-type term, given by the average o
product of the fluctuating particle velocities, for which a closure model must be prescrib
The common procedure [13] is to adopt a Boussinesg-type model, in which this tern
replaced by the product of the symmetric part of the average particle velocity gradient
a proportionality coefficient, often called the “particle viscosity.” Another area requirir
modeling in the two-fluid approach is the boundary slip for the average particle velocity
the surface of a solid body. As discussed in the recent review by Gebale[13], models
for the slip boundary condition of the average particle velocity are diverse and pose sc
fundamental difficulties.

The Lagrangian approachavoids the necessity of introducing closure models for th
averaged variables by directly evolving a set of “representative” particles using the mom
tum equation for an individual particle. The individual particle momentum equation requir
only relatively well-established expressions for the force acting on a single spherical y
ticle moving in the fluid, where in a dilute flow the effect of other particles is neglecte
The boundary conditions at a solid surface can similarly be handled using well-establis
expressions [14] for the elastic and partially elastic rebound of an individual particle frc
a plane surface.

As noted in recent review articles by Stock [15] and Cratal. [13], the Lagrangian
approach is not without shortcomings. In particular, the methods typically used in 1
Lagrangian approach to compute the particle concentration field (which is required for mi
applications) and the particle-induced force on the fluid are quite inefficient. The parti
concentration can be estimated by counting the number of particle control points in e
fluid grid cell [16]. The particle force on the fluid can be obtained by evaluating the chan
in momentum of the particle control points as they exit and enter the grid cells [17, 18].
order for the particle concentration field and the particle-induced fluid force to be smoot
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varying in space, the number of Lagrangian particle control points must be at least an ¢
of magnitude larger than the number of fluid grid cells. It is typical in Lagrangian methc
to let each computational particle represent a “cluster” of actual particles that are ca
along with the computational particles. In most existing Lagrangian methods the nun
of particles in each cluster is fixed during the computation, although exchange of parti
between the computational particles may be desirable in cases where the particle pos
become very deformed from their initial ordering or as a model for particle dispersion fr
subgrid-scale fluctuations in turbulent flows.

For certain categories of two-phase flows, such as bluff body wakes and mixing lay
the use of vortex methods for fluid flow simulation offers a number of advantages comp:
to more traditional approaches based on the velocity—pressure formulation on a fixed
Some of the advantages of vortex methods are evident from the following observati
(i) fluid control points need only be introduced in regions where there is significant v
ticity; (ii) external flows can be solved without truncation to a finite domain; (iii) thel
is little or no numerical dissipation; (iv) the vorticity—velocity formulation does not dé
pend on pressure, and therefore it requires no iteration to satisfy the continuity equs
and avoids specification of pressure boundary conditions; (v) vortex methods are natt
highly adaptive, since control points are carried to regions of high vorticity by the flc
Vortex methods have previously been used for two-phase flow calculations by a nur
of researchers for studies of particle dispersion in cases where the one-way couplin
proximation applies [1-3, 5-7]. However, because the method described above to con
two-way coupling with the Lagrangian particle approach relies on the existence of a:
covering the flow field, vortex methods have not previously been employed for cases w
there exists significant modification of the fluid flow by the particles.

The present paper introduces a new method for computation of two-way couplin
particulate two-phase flows in the context of a Lagrangian vortex method. The met
utilizes two sets of control points, one associated with the fluid vorticity field and the ot
with the particle mass concentration. The vorticity transport equation is evolved on the
control points, while the mass conservation equation for the dispersed phase is evolve
the particle control points. The fluid control points are advected with the local fluid veloc
plus a “diffusion velocity” for viscous problems [19, 20] to account for the spread of t
vorticity support via diffusion. The particle control points are advected by solution of 1
particle momentum equation for individual “representative” particles. A moving averag
procedure is used to compute the volume-averaged particle velocity and contact for
each computational particle control point, where the averaged fields are used in solutit
the particle concentration and vorticity transport equations. Novel features of the solu
method include a scheme for numerical differentiation across two sets of irregularly sp:
control points and an adaptive scheme for generation of new fluid control points to ab.
the vorticity generated by particle forces.

The proposed two-phase flow solution method combines some of the best attribut
the two-fluid and Lagrangian approaches. Use of the Lagrangian version of the indivi
particle momentum equation avoids the necessity of introducing a closure model for
Reynolds-stress term in the average particle momentum equation. Solution of the pa
concentration equation on each particle control point yields a smooth concentration
without an excessive humber of particle control points. The effect of the particles on
fluid flow is computed by differentiating directly over the Lagrangian control points, withc
requiring the presence of a grid spanning the flow. The proposed method is an alternat
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the sometimes controversial [10] clustering method commonly employed for prediction
two-way coupling with the Lagrangian particle advection approach. While the two-phe
flow solution method is presented in the current paper in the context of a Lagrangian vol
method, it can be implemented in conjunction with any standard numerical method
solution of the continuous phase momentum equation.

The governing equations for both fluid and particulate phases are given in Sectiol
Section 3 describes the numerical algorithms used to solve for the fluid and particle mot
including the particle-induced vorticity source. In Section 4, computational results ¢
presented for vorticity modification due to particles in a vortex patch flow, and the ert
incurred by variation of different numerical parameters is evaluated in comparison to res
of a one-dimensional (axisymmetric) finite-difference method and an asymptotic mett
for low Stokes numbers. Section 5 demonstrates the ability of the numerical methoc
resolve the particle-induced vorticity in a flow where the particles move a large distar
from the initial fluid control points. Computations of particle—fluid two-way interaction ir
a mixing-layer flow are given in Section 6. Concluding remarks are given in Section 7.

2. GOVERNING EQUATIONS

The current study employs the following assumptions: (i) the particle volume fractic
is sufficiently small that particle—particle interactions are negligible; (ii) particles are st
ficiently small compared with the length scales of fluid motion that they can be treatec
point forces and the particle wake effects can be neglected; (iii) all particles are sphere
the same diametety,; (iv) particle material density is much larger than that of the fluid;
(v) the carrier fluid is incompressible and the flow is two dimensional. The restriction
two-dimensional flows is not necessary, and the method has been implemented for |
two- and three-dimensional flows, but it simplifies the presentation in the present pape

The particle momentum equation for a small, rigid sphere in a nonuniform flow is give
by Maxey and Riley [21]. For flow in which the material density is much greater than
the densityp+ of the fluid phase, the forces due to ambient pressure gradient and ad
mass, as well as the Basset history force, are negligible. Similarly, the small particle
force that arises in the presence of a background vorticity field [22—-25] is typically n
glected in most particulate flow simulations. For simplicity, we omit these small forces
the following equations and concentrate on the drag and gravity forces, although the ¢
putational method is unchanged if these other forces are added. With this simplificat
the momentum equation for an individual particle can be written in dimensionless form

1)

wherev is the particle velocity and/dt denotes the time derivative following an individual
particle, such that for any quantitfy,

— =2 1§.Vf. @)

The Froude number Fr is defined by=tJ /./gL, whereg is the gravitational acceleration
andL andU are characteristic length and velocity scales of the fluid flow used to wri
the variables in dimensionless form. The symégin (1) denotes the unit vector in the
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direction of gravity, and denotes the contact force acting on a single particle divided by t
particle mass. Considering drag as the only contact force, the dimensionless contact
can be expressed as [26]

"__i .687\ o __ 1}
f=-5(1+015RE™)(V -0, ©)

for values of the particle Reynolds number, Rep¢ |V — U|d,/u, less than about 800.
In (3), U denotes the fluid velocity evaluated at the particle position and St is the Sto
number, defined as the ratio of particle aerodynamic response time to the characteristic
of the carrier fluid motion. The expression:—prdf)U/lS ulL for Stokes number used in
writing (3) is appropriate for small values of the particle Reynolds number.

The basis of the two-fluid model is the volume averaging procedure. W& (&t X,)
denote a “localization” function, which decays rapidly away from the pgintA radial
length scalex,, is associated withW (X — X,), which is assumed to be sufficiently small
that the “mean” flow is not sensitive to variation @f . If g denotes any instantaneous
variable associated with the particulate or fluid phase, then the volume avgbagfey in
the vicinity of X,, is defined by

_ L AOWE — %) dv
[y WX —Xq) dy

(4)

whereV is the total region occupied by the flow. A common example is t&€t — X,,)
equal to unity within some small regidry surroundingk, and equal to zero outside of this
region.

Avariablea(X, t) is introduced that has the value unity within the particles and the val
zero outside of the particles. With this notation, the particle mass concentration is g
by the ratio of the particle mass to the total mixture volumeggia). The dimensionless
partlcle concentration(X, t) is defined byc = (pp/P1)(@). The average particle velocity
field V(x t) and the average particle contact foFed, t) are defined by

-

V=(@V/@), F=@af)/@a). %)

Application of the volume averaging procedure to the particle mass balance yield:
equation for particle mass concentration [12] as

g—(t:+%-(c\7)=o. (6)

Rewriting of (6) using the material derivatiggdt following an individual particle, defined
in (2), gives

dc - o - L =
a+cV-V+(V—v)~Vc=O. @)
Unlike the fluid velocity, the average particle velocity fialds not divergence free, even
in an incompressible flow, due to the effect of particle dispersion.

In writing the governing equations for the fluid flow, the particles are treated as pc
forces, where the particle contact force is volume averaged to yield the particle-indt
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body force acting on the flow. This body force is nonconservative, such that the curl of t
force yields a source term in the vorticity transport equation [13]. Restricting attention
two-dimensional flows, the vorticity transport equation becomes

%zivzw—vX(cﬁ) , (8)
Dt Re K
whereD/Dt =49/dt + U - V is the material derivative following the fluid motiom,is the
vorticity magnitude, and Re UL /v is the flow Reynolds number. The form of the last
term in (8) is derived in Appendix A, and the subscimttached to this term denotes the
component of the curl normal to the plane of the flow.

Using the Helmholtz decomposition, the fluid velocitycan be written as the sum of
an irrotational vector, which is either harmonic or induced by the fluid dilatation, and
solenoidal vector, which is induced by the vorticity. In an unbounded incompressible flt
with zero velocity at infinity, the first of these parts vanishes and the fluid velocity is give
by the Biot—Savart integral

%, /(X_X)Xk . t)da, ©)

wherek is the unit normal to the plane of motion and the area integration is over the prim
coordinate.

3. COMPUTATIONAL APPROACH

3.1. Fluid Flow Field

The fluid flow is evaluated by solution of the vorticity transport equation (8), togeth
with the Biot—Savart integral (9) for the fluid velocity, using a Lagrangian vorticity-base
method in which the vorticity evolution is followed on a setffluid” control points with
locationsXn (t) = Xn€ + Yn€, Wheren € (1, N). Ininviscid flow, the fluid control points are
advected by the local fluid veloci(X,, t). In a viscous flow, the fluid control points are
advected by the sum of the local fluid velodit§,, t) and a “diffusion velocity'Tg (Xn, t),
given bylg(Xn, t) = —(1/Re)(§w/w), so that

D;(n
Dt

= U(%n, t) + Ug(Kn, 1). (10)

The diffusion velocity has the property that the circulation is invariant about any circuit tr
is advected with the sum of the local fluid velocity and the diffusion velocity [20].

Biot—Savart integral. In order to obtain the velocity field induced by the Biot—Savar
integral (9), the vorticity is interpolated by a setverlapping, smooth elements centerec
at each of theN control points [27-31]:

N
o 1) =Y Q)Y X — Xn). (12)

n=1

The element weighting functiops, (X — X,), normalized so that its integral over all space is
unity, determines the vorticity distribution of the element centerég wafth the length scale
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3 (called the element “radius”). For the current study, the weighting function is chosel
a Gaussian

- o 1 s o
Y, (X — %) = —— exp(—[X — Xn|?/87). (12)
7o
The element amplitudg, represents the integral of the vorticity associated with eleme
n over all space. Substituting (11) into (9) and integrating yields an expression for fi
velocity as

1 L Qn (2 /82 - o =
D=5 > r2 [1—exp(—r®/87) ][(X — %n) x K], (13)
n=1

wherer = |X — Xq|.

The fluid velocity at any point is thus obtained as a sum over all fluid control poir
provided that the amplitude, is known. Two types of schemes have been used in t
literature for calculating the element amplitudgsfrom (11) for the given vorticity values
wn at the control points. In the standard vortex blob method (e.g., Leonard [27, 28]),
element amplitude is set equal to an initial amount of vortiofiy,, whereh? is a constant
area which is associated with each element. The vortigjtgt each control point is evolved
according to the vorticity transport equation (3). Beale [32] pointed out that as the cor
points move relative to each other, the amount of element overlap at any one control |
due to its neighboring control points can vary considerably, unless thehgiiq is very
small. This change in element overlap can lead to a substantial increase in error for
the velocity and vorticity fields after a sufficiently long time.

An alternative method for determination of element amplitude (which we call the “v
ticity collocation” method) is proposed by Beale [32] and refined by Marshall and Gr:
[33, 34], in which the element amplitudes are fit to the computed vorticity field at evi
time step. Evaluating the vorticity representation (11) at the locations of the fluid con
points results in alN x N matrix equation for the element amplitud®g. This matrix
equation is ill conditioned, such that if the vorticity valugsat the control points are set
based on a smooth vorticity field, the resulting amplitude vafiiefom exact solution of
the matrix equation oscillate wildly. Beale [32] solved this matrix equation using an ex
iterative procedure, and found that if only a few iterations are used, the long-time e
in the standard vortex method could be substantially reduced. However, Beale’s iter:
procedure is not well behaved since it converges to an exact solution of the matrix eque
such that after a sufficient number of iterations it also produces noisy results. Marshall
Grant [33] proposed an approximate iterative procedure, which filters out the high w
number noise in the amplitude distribution, where the element amplitude is temporz:
assumed to be uniform over a set of elemépé) located in the neighborhood of element
£. The matrix equation for element amplitude thus yields the iteration procedure

wr =0 N e — %)+ D Qv Re — %), (14)

neQ(¢) neP(¢)

whereP () is the complement d@(¢£) andj is the iteration index. This procedure converge
very quickly with an error of ordet? V2w, where the element radidss on the order of the
distance between neighboring control points, and the procedure acts to smooth out vor
fluctuations occurring on a scale much smaller than
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Particle-induced vorticity source.ln computing the particle-induced vorticity source in
(8), it is necessary to differentiate the produét whose value is known on the set igf
“particle” control points with Iocationgm(t) =&mé + nméy, Whereme (1, M). The value
of this derivative is required to be known on the fluid control poiyswheren € (1, N).
Both the particle and fluid control points are irregularly spaced and are not connectec
any grid structure. Differentiation of some functigx) is performed by a “moving least-
sguare” method, in which a polynomial is fit to the valueg@X) on particle control points
lying in a small region close to a given fluid control point at which the derivative is desire
For a nominally second-order accurate method, a quadratic polynomial is used for Ic
interpolation ofg(X) of the form

X—X - X — X -
qn(X’Y)Eg"+A"< s n>+B”<y5yn>+C"< 5 n)(ysyn>
n n n N

2 2
+Dn<x_x“> —i—En(ygy”) . (15)

n n

To obtain the coefficients in (15), a locally weighted least-square error criterion is e
ployed, in which an errog;, is defined by

M
én = Z Lmn[gm — On(&m, Um)]z’ (16)

m=1

wherem andn are indices over the particle and fluid control points, respectively. Tt
“localization” function L, serves to select the particle control points close to the flui
control pointn and is chosen as

_ 2 _ 2
Lo exp[_ (6 = %0)° + (m = Yo ] . @
8[’1
Extremizinge, with respect to these coefficients, as well as with respegt to (15), yields
a system of six linear equations fg, and the five coefficientdy,, .. ., E,, given by
M i j

J— X —
ZLmn(ém ) (”*“ y“) [Gn — Gn(&m, 1m)] =0, (18)

= dn Sn

where the exponenisand j satisfy (i, j) € (0,1, 2) and O<i + j < 3. Once the coeffi-
cients are obtained by solution of thex@ matrix equation at each fluid control point, the
derivatives at the fluid control points are approximated by differentiation of the quadra
fit (15).

In computing the particle-induced vorticity source, a quadratic polynomial must be
to the value ofcF on a set of neighboring particle control points for each fluid contro
point. For a flow system that contaihsfluid control points andM particle control points,
this process would requir® (N M) operations, which is very time consuming for lafge
and M. To speed up this process, a list is stored identifying particle control points in t
neighborhood of each fluid control point. The list is built by first sorting all the particl
controls points into an adaptive tree-like box structure (see below for a detailed discus:
on construction of the box structure) and then searching the nearest boxes.
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It is noted that the “moving least-square” differentiation method reduces to the stan
centered-difference method when the points are uniformly spaced and only nearest ¢
are utilized in the fit. A similar differentiation method was used by Marshall and Gr:
[34] in simulating the viscous diffusion of vorticity. They showed that the moving lea:
square method is able to maintain high accuracy even for cases with very irregularly sp
points.

As noted previously in the Introduction, particles collect in regions with low or evi
no vorticity, such that the region covered by the particle and fluid control points n
become widely separated in space. To better resolve the flow field, we employ an algot
for addition of new fluid control points near the particle control point locations. In tr
algorithm, the particles are sorted into an adaptive tree-like box structure, which is initic
by sorting the particles into a uniform grid of “largest-size” boxes. If the number of partic
inaboxis greater than a prescribed upper lisit the box is divided in two in the coordinate
direction in which the distance between the two farthest particles in the box is the larc
The division is performed such that the two sub-boxes contain (almost) the same numtk
particles. This division process is repeated for each new generation of the offspring b
until the number of particles in each box is less tth\an The last generation of the division
is called the “smallest-size” boxes. If a smallest-size box does not contain any fluid cor
points at the end of each time step, a new fluid control point is created at the centroi
particle locations in the box. The vorticity at this new control point is set by interpolati
using the vorticity representation (11), after which the vorticity amplitudes for all flu
control points are refit.

Viscous diffusion of vorticity. In simulation of viscous flows, it is necessary to comput
the Laplacian of vorticityV2w in (3). Like the particle-induced vorticity source, in com-
puting V2w it is necessary to approximate derivatives of a function whose value is knc
on a set of irregularly spaced control points.

As noted at the beginning of this section, the fluid control points are advected in a visc
flow by the sum of the local fluid velocity(X,, t) and the diffusion velocityig (X, t). The
rate of change of vorticity at a given fluid control point is given by a derivailye/ Dt,
which is related to the material derivatiBa /Dt by

D,w Dw

= — + g Vo.
Dt — bt Y Ve (19)

The vorticity transport equation (8) can be rewritten in terms of this derivative as

D,w w - -
= VA —Vx (P . 2
Dt Re (Injwl) x (cl )k (20)

Following Marshall and Grant [34], |»| is computed on each fluid control point, anc
then the Laplacian of lm| is computed using a moving least-square differentiation meth
similar to that described above.

3.2. Particle Dispersion

The particle motion is represented by a set of Lagrangian particle control @Q,ints
m e (1, M), where the particle velocity is obtained by solution of the particle momentt
equation (2). The particle concentration is evolved on the particle control points by solu
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of the particle mass conservation equation (7), where the moving least-square differentic
method is again used to approximitev andVcin (7). Equations (2) and (7), as well as
the vorticity transport equation (8) and the fluid control point advection equation (10),
advanced in time with a standard second-order predictor—corrector algorithm [35].

The average patrticle velocify and contact forc€, used in (7)—(8), are computed at the
location of each particle control point by a locally weighted average over nearby parti
control points. We leW,,, denote a localization function, in the vicinity of a particle control
pointy, = &8 + nn&y, of the form

RY N2
wmn:exp[—(fm 502 + nn)]’ 1)

2
an

where the radial length scadg, is of the order of the distance between adjacent particl
control points. The value of andF at a particle control poirg,, is then given by

M

M M M
\7m = Z Wmn\7n/ Z Wnns r:m = Z Wmn]?n/ Z Wnn. (22)
n=1 n=1 n=1

n=1

In solving the particle momentum equation (2), it is necessary to calculate the flt
velocity Ti(€,,, t) at the particle positions,,. This is commonly done in fixed grid studies
by first evaluating the fluid velocities on a uniform grid of points and then interpolating
obtain the fluid velocities at the particle positions. However, in a vorticity-based methc
the fluid velocity can be computed directly at the particle locations via solution of the Bio
Savart integral, as described in Section 3.1. In the current paper, we employ an aday
acceleration method, which is an extension of that described by Greengard and Rot
[36], for calculation of the fluid velocity at both the fluid control point positicisand
the particle control point positionérn (see Appendix B for details). This acceleration
method utilizes an adaptive tree-like box structure for the fluid control points similar to tt
described in Section 3.1 for the particles. The acceleration method enables a decrea
number of computations for a flow witk fluid control points andv particles fromO(N?)
to O(N In N) for the velocity at fluid control points and fro@(MN) to O(M In N) for
the velocity at the particle control points.

4. VALIDATION TESTS

In this section, we examine the variation of the error incurred by the proposed numer
method as a function of the spatial and temporal resolution. These tests are performed
a circular vortex patch (with circulation) that is initially filled with heavy particles, in the
absence of gravity. The initial distributions of both vorticity and particle concentration ha
a Gaussian form, with radial length scaleNondimensionalization is performed usiag
andI'/o as characteristic length and velocity scales, respectively. Because we wish to fc
on the effect of the particles in these validation tests, viscous diffusion of the fluid phs
is neglected, although the viscous drag of the particles is retained. This approximatio
consistent with a limit of high flow Reynolds number.

Preliminary calculations show that in the absence of gravity, the vorticity and particle cc
centration fields remain axisymmetric throughout the computation. The two-dimensio
Lagrangian vorticity method (hereafter referred to as LVM) computations are compal
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against the results of a one-dimensional axisymmetric calculation based on an Eul
finite-difference method (hereafter referred to as FDM). For axisymmetric swirling fl
without viscous diffusion and gravity force and with no radial fluid velocity, the governi
equations for the FDM calculations become

d 10 E —

2 E
i s
‘L_”te SR sEt("e —w), (26)

whereE =1+ 0.15R&°". The first term on the right-hand side of (25) and (26) com
from the centrifugal force acting on the particles. (These terms are derived when the vi
equation (6) is written in terms of its polar components.) The fluid azimuthal velogity
obtained by inverting the vorticity definition to yield

;
Up(r,t) = r}/ Ho(’, t)dr'. 27)
0

The FDM calculations solve the vorticity transport equation (23) and the particle ¢
centration equation (24) on a uniform grid using centered finite-differences. The par
momentum equations (25)—(26) are solved on Lagrangian particle control points, in wi
linear interpolation is employed to relate variables defined on the particle and fluid cor
points. The fluid velocityu, is obtained by solving (27) using the standard trapezoid
method. Time evolution is performed using the MacCormack scheme [35], and both
temporal and spatial resolution are sufficiently fine that the FDM solutions can be rega
as “exact.”

Numerical results for vorticity and particle concentration within a vortex patch wi
maximum initial particle concentration (at the center of the vortex patch)gi= 0.3 are
given in Figs. 1 and 2, in which the solid lines represent the FDM results and the sym
represent the LVM results at different times. The LVM calculations are performed us
1027 fluid control points and 5000 particle control points. These fluid and particle con
points are initially arranged in 15 and 41 concentric circles, respectively, in a circular
with the radius of Bo. The time step was held fixed att =0.1. The radii of both the
fluid and particle control points were set adaptively by calculating the average separ:
distance between the control point and its four closest control points (of the same ¢
and then multiplying by an “overlap” factor of 2. The particle velocity is initially set to b
identical to the fluid velocity at the location occupied by the particle.

Two sets of LVM computations for the vortex patch flow are reported in Figs. 2a ¢
2b; for one, the averaging length scalg in (21) is set equal to zero and for the othgy,
is set equal to the particle radidg. The vorticity results for these two cases are neatr!
identical, and results for the case with = 0 are shown in Fig. 1. Vorticity profiles at all
times later than the last time shown in Fig. 1 are practically identical to the lowest cu
The concentration values for the two LVM calculations exhibit small differences after a lc
time as the concentration profile becomes increasingly peaked. For both concentratio
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FIG. 1. \Variation of vorticity»w with radiusr for a Gaussian vortex patch flow filled with particles foe=St
andcyax = 0.3. The axisymmetric one-dimensional FDM computational results are represented by a solid line .
the two-dimensional LVM results are represented hyA, and( for timest =0, 20, and 60, respectively. The
results are normalized by the initial vorticity at the vortex center.

vorticity modification, the LVM computations are generally found to compare well wit
the FDM solutions, with the exception of a slight smoothing of the concentration prof
for the LVM case withy,, = 8,y after a long time.

The time variation of the vorticity profiles shows that particle dispersion significant
reduces the vorticity within the patch. This vorticity reduction results from the negati
vorticity generated by the particles as they move radially outward under the action of
centrifugal force. As the particle concentration in the vortex core region decreases,
vorticity reduction rate slows down and the vorticity eventually approaches an asympic
profile. For instance, the computed maximum vorticity in Fig. 1 at time?00 differs only
by about 4% from that shown at tinte= 60.

The patrticles evolve into a thin, high-concentration band that translates radially outw
from the vortex core. The width of this particle band becomes thinner and the maximum
ticle concentration becomes larger with time. The nature of the particle evolution obser
in Fig. 2 is similar to that reported by Druzhinin [37], who obtained an analytical solutic
for the particle concentration wave for small Stokes numbers. Despite the high value of
particle concentration in this outward-traveling wave, the effect of the particles on the fl
vorticity seems to be negligible after they are ejected from the vortex core. This obsel
tion is due to the fact that the propagation speed of this particle wave decreases ste
with time, so that the difference between the fluid and particle velocities becomes v
small.

It is desirable to examine the variation of these results as different numerical parame
are varied. Results for the effect of averaging length seglen the vorticity and concen-
tration profiles are shown in Figs. 3a and 3b, respectively, for caseswyith0, 5, and
25, at timet = 120. The averaging length scale is observed in Fig. 3a to have only a sli
effect on the vorticity modification. However, the concentration peak in Fig. 3b is observ
to become smoothed ag, is increased, resulting in a 15% difference in maximum value o
particle concentration between cases with= 0 ando, = 25,. Itis noted that the moving
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FIG. 2. Variation of particle concentratiomwith radiusr for a Gaussian vortex patch filled with particles, for
St=1 andc,,x= 0.3. The axisymmetric one-dimensional FDM computational results are represented by a ¢
line and the two-dimensional LVM results are represented bi/th&, O, andV for timest =0, 20, 80, and 140,
respectively. The results are normalized by the initial value of particle concentration at the vortex center. Plo
given for cases with two different values of the averaging length s¢aléa) o, = 0 and (b)oy, = -

least-square differentiation method has a certain amount of implicit filtering, which mi
explain why both the vortex patch flow and numerous other flow calculations are fo
to yield smooth vorticity and concentration fields even when no explicit averaging is u
(i.e.,am=0).

The LVM computations reported in Figs. 1 and 2 were also repeated with differ
numbers of particle control points and different time steps, and the “error” is obtainec
the difference between the LVM and FDM results. The averaging length sgaie set
to zero in these parameter tests in order to eliminate the concentration smoothing e
Since the error in vorticity is consistently less than the error in particle concentration, b
least one order of magnitude, we focus on concentration error in these tests. The @rrol
evaluated at =0, is plotted versus time in Fig. 4 for LVM computations with= 5000
particle control points and five different time steps. The error decreases monotonically
decrease im\t; however, asAt becomes smaller than abotit = 0.1, the error becomes
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0.9 T T T T

max

FIG. 3. Plots illustrating the effect of the averaging length saaleon the evolution of (a) vorticity and
(b) particle concentration for a Gaussian vortex patch filled with particles, wihlSindc,.x = 0.3. LVM results
are given for cases witta,, = 0 (solid curve) g, = &, (dashed curve), and,, = 25, (dash—dotted—dotted curve).
The time step is fixed akt = 0.1, the number of particles is fixed at 5000, and the plot is given atttin&20.

increasingly controlled by the spatial resolution and does not exhibit significant furtr
decrease for smallext.

The error in particle concentration also decreases with increasing number of particle
trol points, as shown in Fig. 5 for computations with = 0.1 and four different numbers
of particle control points. This spatial resolution error results principally from the appro»
mation of the divergence of the average particle velocity in (7) with the moving least-squ
method. The error of the moving least-square method is proportional to the square of a
age separation distance between the control points [34]. Good results (with error less
2% of the FDM results) are obtained for the vortex patch with 5000 particle control poin
which corresponds to a distance of 0.04 between the particle control points at the begini
of the calculation.

For a vortex patch filled with particles with a small Stokes number (i.ex $}, the
motion of the flow in the center region can be approximated by a rigid-body rotation, a
the following asymptotic approximations (valid to leading order in St) for the vorticity an
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FIG. 4. Plotillustrating the effect of time step on the maximum error in particle concentratior=(@) for
the two-dimensional LVM computations with a Gaussian vortex patch filled with particles. The solid, dasl
dash—dotted, long-dashed, and dash—dotted—dotted curves are for runstwit®05, 0.1, 0.2, 0.5, and 1.0,
respectively. Other parameters are fixed as folloWs= 5000, St=1, Cnax= 0.3, o =0.

particle concentration at the center of the vortex patch can be derived [38]
dwg ~ Coa)gSt dg ~ a)gCgSt
dt = 2(1+4cp)’ dt — 2

wherewg = w (0, t) andcy = ¢(0, t) are vorticity and concentration at the center of the vorte
patch. The system (28) is solved numerically by the fourth-order Runge—Kutta method.

(28)
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FIG.5. Plotillustrating the effect of the number of particle control poidt®n the maximum error in particle
concentration (at = 0) for the two-dimensional LVM computations with a Gaussian vortex patch flow filled wit
particles. The solid, dashed, dash—dotted, and dash—dotted—dotted curves are for rivis=ii€i900, 5000,
2000, and 1000, respectively. Other parameters are fixed as follaws0.1, St=1, Cyix=0.3, o =0.
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FIG. 6. Time variation of (a) vorticity and (b) particle concentration at the vortex patch center for a ca
with St=0.1 andcy,a.x=0.3. The solid line represents the small St asymptotic solution@nepresents the
two-dimensional LVM results.

time variation of the vorticity and the particle concentration for a case with with (5t
andcmax= 0.3 is shown in Figs. 6a and 6b. The asymptotic expressions (28) show gc
agreement with the LVM results for a time period of about 3 or 4 tiny&t, lbut gradually
begin to deviate from the computational predictions over longer times. This behavior is
unusual for asymptotic solutions of this type, and it should be possible to extend this g
agreement for longer time intervals by further reducing the Stokes number.

5. EXAMPLE COMPUTATION FOR A FLOW DOMINATED
BY PARTICLE-INDUCED VORTICITY

As noted in the Introduction, one of the advantages of vorticity-based methods is t
fluid control points need only be introduced in regions where there is significant vortici
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However, particle dispersion may cause the particle control points to separate fromn
fluid control points by large distances, so that it is no longer possible for the existing fl
control points to absorb the particle-induced vorticity source. This situation is remec
with the use of an adaptive scheme for fluid control point generation, which is describe
Section 3.

Inthe current section, we report the results of a calculation that demonstrates the capa
of the fluid control point insertion scheme for resolving the particle-induced vorticity. In tl
calculation, the flow is again initialized as a Gaussian vortex patch filled with particles (v
an initial Gaussian concentration profile), but we now admit the presence of a downv
gravitational field. The particle behavior under the combined effects of the gravitatic
field and the vortex-induced flow depends principally on the value of the Froude num
When the Froude number is small enough, the particles initially located within the vol
patch fall through the patch, forming after sufficient time an elongated vorticity wake fi
trailing the particles.

In the calculation reported here, the dimensionless parameters that control the two- |
flow are set as F= 0.2, cnax=0.3, and St= 1. The averaging length scalg, is set equal
to the element radiu&;,. The positions of the fluid control points at three different time
are shown in Fig. 7. Initially, both the fluid and the particle control points are placed witl
a circular region (Fig. 7a). As time proceeds, the particles fall through the vortex pa
deforming and elongating the vortex patch in the negagivdirection (Fig. 7b). As the
particles leave the initial vortex patch, new fluid control points are generated in the vici
of the falling particles, such that by the time shown in Fig. 7c, a long trail of these ne\
generated fluid control points is found lying between the falling particles and the ini
vortex patch.

The spatial resolution of the fluid control points inserted in this manner can be contro
by adjusting the maximum numbé of particles in the smallest size box. Since in th
current computations it is desired that the mean separation distance between the in:

220k 4

L 1 1

4 2 0 2 4-

X

FIG. 7. Positions of the fluid control points in a flow initialized as a Gaussian vortex patch filled with partic
for a case with F&= 0.2, St=1, andc,.«= 0.3 attimes (a} =0, (b)t =2, and (c}t = 4.
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FIG. 8. \orticity contour plots for the flow described in the caption to Fig. 7 at times £a), (b)t =2, and
(c) t =4. The vorticity increment between each level is 0.27 with the minimum vatlLig corresponding to the
curve numbered 1.

fluid control points be similar to that for the initial fluid control points within the vortex
patch, the value oN_ is set equal to the initial number of particle control points dividec
by the initial number of fluid control points.

Contour plots of the vorticity field within the falling particle patch and in its wake ar:
shown at three different times in Fig. 8. For this Froude number, the gravity effects
much stronger than the inertial force within the original vortex patch. The vortex patch
therefore quickly absorbed into the wake of the falling particles, within which the vortici
is much higher (by a factor of nearly four) than within the original vortex patch.

The wake-like form of the vorticity field in Fig. 8 is indicative of a downward jet of fluid
trailing the particles. The effect of this downward jet is apparent in the V-like indentatic
of the region occupied by the particle control points as shown in Fig. 9. Similarly, in tl
contour plots of the particle concentration in Fig. 10, the downward jet generated by
particle-induced vorticity causes the particles to collapse into a thin arc, where the mic
part of the arc (neax = 0) falls more rapidly than the ends of the arc.

6. TWO-PHASE PLANE MIXING LAYER

In this section, we examine the effect of particles on the fluid vorticity in a periodic plau
mixing layer, with Gaussian initial vorticity and concentration profiles, using the Lagrangi
vorticity method described in Section 3. The computations are performed by following t
evolution of a single period of the flow with wavelengtlin the streamwiséx) direction.
The velocity field induced by the vorticity outside of the computational domairkG< A
is taken into account by adding a sufficient number of periods of the vorticity field «
each side of the computational domain in calculation of the Biot—Savart integral. Test:
the velocity calculation show that with five periods included on each side, the maximt
error in velocity is less than 5% of the exact result obtained by treating the images of
vortex blobs as point vortices [40]. The velocity induced by neighboring periods requir
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FIG. 9. The evolution of the particle control points with time for the flow described in the caption to Fig.
attimes (aY =0, (b)t =2, and (c}t =4.

relatively little time to compute, since nearly all of the points can be treated indirectly us
the multipole acceleration method.

The initial distributions of vorticity and particle concentration across the mixing lay
have the form

wX) = _AY exp(—y?/o?),  C(X) = Cmax €XP(—Y?/0?), (29)
JTo

FIG. 10. Contours of the particle concentration for the flow described in the caption to Fig. 7 at tin
(a)t =0, (b)t =2, and (c} = 4. The concentration increment between each level is 0.11 with the minimum va
0.12 corresponding to the outermost curve.
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where AU is the velocity difference across the layer ands the Gaussian core radius.

AU ando are chosen as the characteristic velocity and length scales, respectively, use
writing the problem in dimensionless form. In the computations, the vorticity field of th
mixing layer is discretized initially using 4100 fluid control points and the particulate pha
is discretized using 9150 particle control points. The two sets of control points are initia
uniformly placed in a region of width 26§ and then the locations of the control points
are randomly perturbed by up to 30% of their initial separation distances prior to the s
of the computations. An initial random perturbation of this sort is generally advisable
computations using the Lagrangian vorticity method in order to avoid alignment of cont
points later in the computation, which increases the matrix condition number for the mov
least-square differentiation scheme.

Both the fluid and particle control point positions and the vorticity and particle cor
centration fields are perturbed by a sinusoidal wave with displacement amplitude equi
0.05.. This perturbation induces the instability and the roll-up of the shear layer. In all t
computations reported here, the wave length is choseér-ak3.20, which corresponds to
the wave with the maximum growth rate from the single-phase linear stability theory [4!

The effect of the particles on the flow field is examined in both a high Reynolds numt
case (such that diffusion of the vorticity field is neglected) and in a low Reynolds numt
case (Re=100). The parameters used in the computations are the Stokes numbedr) (St
and the initial maximum particle concentratiogy,fx=0.3). In both cases, we compare
the results obtained with the one-way coupling approximation to the full two-way couplil
results. The averaging length scalgis set equal to the element radiiasfor all cases. Both
the vorticity and the particle concentration contours are obtained by interpolation usin
Delauney triangularization of the fluid and particle control points, which in regions of tt
flow where the resolution of the concentration and vorticity fields are sparse gives the p
a somewhat jagged appearance.

The evolution of the mixing layer, both with and without the influence of particles, consis
of growth of the initial perturbation wave with time and eventual roll-up into a spiral vorte
structure. This spiral vortex structure exhibits a concentrated eddy at the center of the pe
and two stretched vorticity braids connecting to the two neighboring eddies. This struct
is evident, for instance, in the vorticity contour plots for the high Reynolds number ce
shown in Fig. 11 for the case with one-way coupling. When two-way coupling is employ
in the simulation (Fig. 12), the eddy at the center of the spiral structure is much weaker
to the vorticity decrease associated with dispersion of particles from the central vortex
the centrifugal force. For instance, at timne 30, the vorticity at the eddy center is about
0.47 in the case with two-way coupling and 0.56 in the case with one-way coupling.

The particles are only very slowly dispersed from the vorticity spirals, since the centrifu
force at large radius is much weaker than within the center vortex, so the vorticity witt
the spirals does not show strong decay. In the two-way coupling case with high Reync
number, the vorticity within the spiral braids is observed to first increase with time a
then decrease as the particles move through. For instance, in the case shown in Fig. 1.
maximum vorticity within the braids increases to 0.98 at ttme30, whereas the maximum
vorticity is initially only 0.56. This increase is caused by the addition of vorticity from th
high-concentration particle bands that are dispersed from the central eddy and pass thr
the vorticity spirals. In addition to augmenting the vorticity within the spiraling braids, th
high-concentration bands also produce negative vorticity, leading to the developmen
regions of weak vorticity of the opposite sign to the initial vorticity in Fig. 12b.



FIG. 11. \Vorticity contours for a high Reynolds number two-phase mixing layer wits $andcy.=0.3
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at times (a} = 15 and (b} = 35, with one-way coupling.

FIG. 12. Vorticity contours for the flow described in the caption to Fig. 11 at times£a)5 and (b} = 35,

with two-way coupling.
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The vorticity spirals for the two-way coupling case exhibit a pronounced Kelvin
Helmholtz instability that causes them to become increasingly wavy with time, as sho
in Fig. 12b. The spiral arms in the one-way coupling case also exhibit small oscillatic
(Fig. 11b), but the oscillation amplitude is less than in the two-way coupling case. Tl
difference may be due either to the increased strength of the spiral arms for the two-
coupling case or to the perturbations due to vorticity generated by the high-concentra
particle bands.

Both the one-way coupling and the two-way-coupling results indicate that the partic
tend to move outward under the centrifugal force induced by the central vortex and col
in bands near the outer edge of the vortex structure. This behavior is consistent with
results of several previous studies of particle dispersion in mixing layers [6, 9]. Figure
shows the two-way coupling result for particle dispersion in a high Reynolds number flc
The particle concentration near the outer edge of the vortex increases with time, s
that a narrow band with high particle concentration eventually develops, as shown in
contour plot of the particle concentration field in Fig. 13b. It can be seen from Fig. 13b ti
the particle concentration has two peaks within the high-concentration particle band.
maximum particle concentration is observed to be as high as 7 times the initial value in
two-way coupling computations.

The two-phase mixing layer computations were repeated for a low Reynolds number ¢
with Re=100. The effect of viscosity is to diffuse vorticity in both the spiral braids and i
the central vortex, such that eventually the braids nearly disappear (in the one-way coug

af (b)
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FIG. 13. (a) The locations of the particle control points and (b) contours of particle concentration for the flc
described in the caption to Fig. 11 at time 35.
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FIG. 14. \orticity contours for a viscous two-phase mixing layer with=St, c,.x= 0.3, and Re=100 at
times (a)t = 15 and (b} = 35, with one-way coupling.
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FIG. 15. Vorticity contours for the flow described in the caption to Fig. 14 at times £a]5 and (b} = 35,
with two-way coupling.
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FIG. 16. (a) The locations of the particle control points and (b) contours of particle concentration for the flc
described in the caption to Fig. 14 at time: 35.

case) and an elliptic vortex patch is formed at the center. The vorticity within this cen
eddy diffuses outward with time under the effect of the viscous diffusion. Vorticity contou
at the same two times are shown for the one-way and two-way coupling cases in Figs
and 15, respectively. The largest effect of two-way coupling is the appearance of two str
vorticity spirals near the location of the high-concentration particle bands (Fig. 15b), b
above and below the central vortex. The spiral braids in the one-way coupling case |
nearly completely diffused away by the time shown in Fig. 14b, which suggests that
vorticity within the strong spiral braids observed in the two-way coupling case (Fig. 15
is generated by the particles and does not arise from the initial mixing layer vorticity.
The particle dispersion in the case with-400 is qualitatively similar to that in the high

Reynolds number case. The particle control points and the particle concentration cont
are shown in Fig. 16, which again indicates that the particles tend to move away from
center vortex and concentrate in narrow bands near the outer region of the vortex struct

7. CONCLUSIONS

In this paper, a new approach for computation of two-phase flows is introduced wh
combines aspects of the two-fluid and Lagrangian particle approaches. In this appro
representative particles are advected by the flow, with velocity determined by solution of
momentum equation for an individual particle. A moving averaging procedure is employ
to compute the volume-averaged particle velocity and contact force fields. The average
ticle velocity is used to evolve the particle concentration directly on the Lagrangian parti
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control points. The product of the average contact force and the particle concentration
the particle force acting on the fluid.

This solution approach for the particle phase can be implemented with any common
tion method for the fluid phase, using either a velocity—pressure or a vorticity—velocity fo
ulation. Both the particle concentration and contact force are obtained on the Lagrar
particle control points without the need for a grid covering the flow field, and the appro
avoids the need for particle “clustering” often used in the Lagrangian particle appro:
The current paper employs a Lagrangian vortex method to evolve the fluid phase, sucl
a separate set of fluid control points are introduced on which the vorticity is evolved
solution of the vorticity transport equation. The vorticity changes on a fluid control po
both because of viscous diffusion and because of vorticity generation by the nonconsen
body force induced by the particles. The fluid control points are advected with the sur
the local fluid velocity and an additional “diffusion velocity” that accounts for the spre
of vorticity support due to diffusion. A fast integration method is used to obtain the flt
velocity at both the fluid and the particle control pointlocations, which is based on sorting
fluid and the particle control points into tree-like box structures and applying the multip
expansion. A method for differentiation across the two sets of control points is descri
using the moving least-square procedure. The solution procedure for the fluid pha
given only for a two-dimensional flow in this paper, but extension of this procedure to th
dimensions requires only slight modification of the Biot—Savart integral, addition of
vortex stretching term in the vorticity transport equation, and terms irz-tiesction for
the polynomial fit (15) used in the least-square differentiation.

The numerical method is validated by a series of computations with a Gaussian vc
patch filled with particles. The results show that negative vorticity is generated by
particles as they are advected away from the vortex center due to the centrifugal fc
which results in reduction in the vorticity magnitude at the vortex center. The numer
results are in good agreement with the results obtained by a one-dimensional Eulerian f
difference method. The computed vorticity and particle concentration at the center of
vortex patch also agree well with Druzhinin’s asymptotic approximation for small Stol
numbers and short times.

A method for fluid control point generation near the particle locations is propos
in the paper using an adaptive box sorting algorithm. A fluid control point generat
scheme is necessary since particle dispersion can lead to situations where there al
or no fluid control points near the particles to absorb the particle-induced vorticity. T
fluid control point generation scheme is demonstrated in a calculation of a particle cl
falling under gravity, which exhibits a long wake of vorticity trailing the falling particle
cloud.

Computations are also presented that examine the effect of two-way coupling in t
phase plane mixing layer flow. In agreement with previous studies, the particles are foul
move away from the center of the vortex spiral and accumulate in a narrow band with |
particle concentration that wraps around the central vortex. The particle-induced vort
source decreases the vorticity within the central eddy as the vorticity layer rolls up |
a spiral structure. Within the spiraling vorticity braids, the two-way phase coupling le:
to the formation of regions where the vorticity is increased or decreased compared 1
ambient value on either side of the braid. The particle-induced vorticity is also observe
enhance the development of secondary Kelvin—Holmholtz instability within the vortic
spiral braids.
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APPENDIX A: DERIVATION OF PARTICLE-INDUCED VORTICITY SOURCE

The local average forde acting on a single particle in the vicinity of a poat timet
is given by

P = (ppVpU?/L)F, (A1)

whereﬁ(i, t) is the dimensionless average force defined in\(g)s the volume of a single
particle, andU and L are the characteristic velocity and length scales of the fluid flov
We now letN denote the number of particles per unit volume of the mixture, so that tl
productV,N is equal to the local averaga) of the indicator functiora(X, t) introduced

in Section 2. The particle force is opposed by a force of equal magnitude acting on the f
phase, which appears as a nonconservative body force on the fluid [13]. The value of the
body force b per unit volume of the mixture is given by the product of the particle numbe
densityN times the local average forceP acting on the fluid from a single particle, or

b =—N(ppVpU2/L)F. (A2)

The particle mass concentration, defined in Section 2, is given simpby by, so that
the dimensionless particle concentratoaa o, N V,/ o5 . Dividing by o U 2/L, we can thus
write (A2) as

-

- A3
pfU2/L (A3)
The expression (A3) yields the dimensionless fluid body force per unit volume, the curl
which provides a source term that appears on the right-hand side of the vorticity trans
equation (8).

APPENDIX B: ACCELERATED VELOCITY CALCULATION METHOD

Direct calculation of the induced velocity & control points requires an amount of
work of O(N?), which can become excessive for lafge In the current paper, we utilize
an adaptive multipole acceleration scheme [41] for calculation of the fluid velocity at bc
fluid and particle control points. In this method, the fluid control points are sorted into bo»
having a tree-like structure, and a multipole expansion is used to approximate the indt
velocity of control points in boxes that are sufficiently far away from the point whelt
the velocity is desired. The velocity of control points closer than some cutoff distan
is computed directly. The construction of this box hierarchy is performed in the mant
described in Section 3, its primary features being that the box sorting is completely adag
and each box within a given generation contains approximately the same number of cot
points.

For each “smallest box” of the tree-like family, two interaction lists are generated, cor!
sponding to boxes for which the velocity calculation is performed “directly” or “indirectly’
(i.e., using the multipole expansion). These box interaction lists are determined based
critical value of the distance between the vorticity “source” points and the “target” poin
at which the velocity is desired. The critical distance depends both on the allowable e
and the order of terms retained in the multipole expansion. For each smallest-size “tar
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box ¢, we first scan over the set of largest-size “source” baxe® examine whether the
minimum distance between points in boand those in each of the largest-size baxess
greater than the cutoff distance. If it is, the buoxis placed on the “indirect” interaction list
of box <. If the box separation distance is not greater than the cutoff distance, this proce
is repeated with the offspring of bax , and so on. If this ratio is not greater than the cuto
value for one of the smallest-size source baxgshe source bory is placed on the “direct”
interaction list of the target bok The “target” and the “source” points in this procedur
may consist of either the same set of points (as when determining velocity on fluid cor
points) or different sets of points (as when determining velocity on particle control poin
For a pointP with locationXp, the fluid velocity is given by the sum

(=p™n o g™ kxF
U(Xpat) = ud|r+ _ZZZ min! Zmnaxmayn [2 s (Bl)

£=1 m=0 n=0

where the first term on the right-hand sidgy, represents the portion of the velocity
contributed from the control points contained in the boxes that are on the direct interac
list of the smallest-size box containing poiRtand the second term is the portion of the
velocity contributed from the control points contained in the boxes that are on the indi
interaction list. This second term in (B1) is obtained as a sum oveL thexes on the
indirect list index, wheré = x@ — Xp, I =], andxg is the location of the mass center of
box ¢. The symbol, n, denotes the “moment” of bokand is defined by

N
Jemn =Y Q0 — )" (Y — 50", (B2)
g=1

whereN; is the number of control points in bax X, and¥, are thex- andy-components
of the box center locatiogy, andQq is the amplitude of thgth vorticity element (given
by (14)). The momenli, n, of box ¢ is independent of the poir at which the velocity is
computed, which allows this term to be computed once and stored at each time step.

Direct calculation of the derivative in (B1) can be time consuming for large values of
andn. However, these derivatives can be rapidly computed from recurrence relations, -
that only the first derivatives need to be computed directly. Lettimgpd 8 be thex- and
y-components ok x T /r?, respectively, and using the identities

9 24 _ e
HOH =L L0 =1 (83)

we can derive the following recurrence relations (validfor 2) for the derivatives in (B1):

am’B mflﬂ 8m72ﬂ

2 —

X -|-2mxa ) +m(m—1)8 - =0,
gm m—1

2% =0,

aym myaym 1 aym

_l’_
am /98 amg a1 /5B 3B
2 ove P 4 omx— (22 =
' axm<8y> + Y oxm + X1 ay +m(m 8xm ay 0

oM [ o« oMo gm-1
rzw () +2X—— 4+ 2my——

(B4)

aX
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From the fact thatr and 8 are harmonic functions, another set of recurrence relatior
follows:

am am om am
* = (i Y B _ (_1)m/27ﬁ, for evenm
axm gym’ aym axm (B5)
—1 -1
Mo — (_1)(”1—1)/2& 3_0[ 3m_,3 = (_l)(m—l)/zﬂ % for oddm.
axm aym-1\ax/  aym axm-1\ay)’

Together (B4) and (B5) are sufficient to determine all the derivatives in (BIhfer2.

The speed of the computation depends on both the number of boxes on the interac
lists and the number of terms included in the multipole expansion. The fewer cont
points contained in boxes on the direct interaction list and the fewer terms included in
expansions, the faster the calculation. The number of boxes on the direct interaction
depends on the cutoff valu®,; of the target—source box separation distance. The small
the value of dit, the shorter the direct interaction list. On the other hand, the error associa
with truncation of the multipole expansions increaseaslecreases, thus requiring more
terms to be retained to obtain solutions of the desired accuracy.

An optimization procedure is reported by Winckelmansil.[42], in which the critical
distanced. is evaluated based on a modified version of the theoretical upper bound for
absolute error in the multipole expansion derived by Salmon and Warren [43]. A numeri
test of this upper bound for a variety of flow types has been performed, which indica
that the true error is typically about an order of magnitude lower than indicated by t
theoretical bound. The maximum number of control poltsin the smallest-size box is
determined simply by comparing the tindg;; required to directly compute the induced
velocity between two points and the tirfig required to compute the induced velocity at
one point by a single box using the multipole expansion method with terms through or
h. The multipole expansion method is efficient onlyljif < N Tgir, which yields the lower
bound

NL > Tn/ Tair. (B6)

Both the highest orddr in the multipole expansion and the maximum absolute error fror
any given box must be specified prior to the computation.
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